你需要多少 π?

加入我們的科學愛好者社群!

本文發表於《大眾科學》的前部落格網路,反映了作者的觀點,不一定代表《大眾科學》的觀點。


我七月大部分時間都在旅行。希望您喜歡這篇來自過去的文章,該文章最初於 2012 年 7 月 21 日發表在Observations部落格上。

各種慶祝圓周率 π 的餡餅。π 近似日是 7 月 22 日。來源:flickr/djwtwo

我希望你已經為你的盛大 π 近似日派對做好了準備!你可能在 3 月 14 日慶祝了π 日。它的名字來源於 3.14,即圓的周長與直徑之比的前三位數字。一些喜歡數學的怪咖們總是在尋找吃餡餅的藉口,他們也會在 7 月 22 日慶祝這個數字。分數 227 的值為 3.142857,因此它的前三位數字與 π 相同。


關於支援科學新聞報道

如果您喜歡這篇文章,請考慮透過以下方式支援我們屢獲殊榮的新聞報道: 訂閱。透過購買訂閱,您正在幫助確保有關塑造我們當今世界的發現和想法的有影響力的故事的未來。


3.14 和 227 都是 π 的近似值,因此這兩個日子都值得擁有相同的名稱。事實上,227 比 3.14 更接近 π。因此,如果你是一個有抱負的吹毛求疵者,你可以選擇在 7 月 22 日慶祝 π 日,在 3 月 14 日慶祝不太接近 π 日。(無論如何,你都會享用到更多的餡餅。)但是,作為 π 的近似值意味著什麼?以及為什麼這很重要?

π 是無理數。也就是說,它的十進位制展開永遠不會結束,也永遠不會重複,因此我們寫出的任何位數都是近似值。(當然,我們可以只用一個符號來精確地寫出這個數字:π。)

我們知道的每個小數位都會使涉及 π 的任何計算更加精確。但是,我們實際上需要多少位才能獲得足夠的精度?這當然取決於應用。當我們將 π 四捨五入為整數 3 時,我們與正確值的偏差約為 4.51%。如果我們用它來估計直徑為 100 英尺的物體的周長,我們就會偏差 14 英尺多一點。當我們加上十分位,並使用 3.1 作為 π 的近似值時,我們的誤差只有大約 1.3%。近似值 3.14 與真實值的偏差約為 ½%,而相當著名的 3.14159 的偏差在 0.000084% 以內。

如果你要圍繞一個半徑為 100 米的巨型圓形游泳池建造圍欄,並且使用該近似值來估計你需要的圍欄量,那麼你將短半毫米。與 628.3185 米的總圍欄長度相比,半毫米是微不足道的。精確到半毫米絕對足夠了,而且你用來建造圍欄的工具可能給你的結構帶來的不確定性比你對 π 的近似值還要大。

那麼,在更大的距離上具有更高精度標準的事物呢?我問了一位 NASA 科學家,該機構在其計算中使用 π 的多少位數字。NASA 國際空間站制導導航與控制 (GNC) 子系統經理蘇珊·戈麥斯 (Susan Gomez) 說,涉及 π 的計算中,GNC 程式碼使用 15 位數字,空間整合全球定位系統/慣性導航系統 (SIGI) 使用 16 位數字。SIGI 是在任務期間控制和穩定航天器的程式。

π 最常出現在涉及圓形或週期性運動的公式中,並且它滲透到一些基本的物理常數中。這些常數出現在物理學的各個領域:基本粒子的質量、氣體體積中的分子數、將物質結合在一起的力等等。(π 本身不被認為是基本的物理常數。)精細結構常數或“耦合常數”衡量控制電子和μ子與光子相互作用的電磁力強度,其中涉及 π,而自由空間的磁導率,描述了真空如何形成磁場,是 4π×10-7。知道基本常數的高度精確值對於對涉及物理學的現象做出良好的預測非常重要,並且對常數的實驗測定甚至可以幫助我們提高對控制宇宙的物理定律的理解。

信不信由你,有一個委員會負責就這些基本常數值提出建議。科學技術資料委員會 (CODATA) 是國際科學理事會的一個跨學科小組,定期釋出一組公認的基本物理常數值。最近的版本 2010CODATA 於 2011 年 6 月釋出。

國家標準與技術研究所基本常數資料中心工作的物理學家彼得·莫爾 (Peter Mohr) 表示,該研究所參與計算傳播公認的 CODATA 值,他說該研究所在其計算中使用 π 的 32 位有效數字。(對於程式設計極客來說,這稱為“四精度”。)

因此,NASA 科學家僅使用 π 的 15 或 16 位有效數字來維持空間站的執行,而宇宙的基本常數僅需要 32 位。然而,在 2006 年,日本的原口明在 16 個半小時內背誦了 π 的 100,000 位數字,每小時停下來五分鐘,用飯糰補充體力。而計算出的 π 的位數的世界紀錄是10 萬億,至少截至 2011 年 10 月是這樣。π 計算可以用來測試計算機的精度,但我認為這是一種 π 狂熱的症狀,而不是對 π 的合理需求。其他數字也可以同樣有意義地使用,但我們選擇使用 π。

似乎我們知道,並且努力發現的 π 的位數比我們在地球上的任何實際應用甚至我們現在希望到達的太空部分所需的位數多得多。我猜想十進位制表示的無止境只是吸引人們。背誦 π 的原口告訴《日本時報》,他對 π 的記憶是他對永恆真理的追求的一部分。對於某些人來說,這可能是一種挑戰:我能走多遠?我們想要突破我們的極限,而記憶幾頁數字似乎毫無意義,直到我們給它加上 π 的光環。

蘋果餡餅,一種近似餡餅。來源:維基共享資源/Infratec

回到地球,π 日和 π 近似日是享用甜點和思考最令人著迷的超越數的好理由。也許在 7 月 22 日,我們應該做一些近似餡餅:給所有人做酥皮點心、水果餡餅和布朗貝蒂!

© .