災難的物理學:火車脫軌事故的探索 [摘錄]

瞭解火車背後的科學原理可以幫助我們找出事故的原因,並引導我們走向更安全的鐵路

摘自喬治·比貝爾所著的《火車失事:鐵路災難的法醫學分析》,版權歸約翰霍普金斯大學出版社所有,2012年。

信不信由你,火車開得太慢也可能脫軌——稍後會詳細說明。

彎道速度過快


關於支援科學新聞報道

如果您喜歡這篇文章,請考慮透過以下方式支援我們屢獲殊榮的新聞報道: 訂閱。透過購買訂閱,您將有助於確保有關塑造我們當今世界的發現和想法的具有影響力的故事的未來。


1947年,一列賓夕法尼亞鐵路公司的客運列車,由兩臺蒸汽機車和14節車廂組成,於凌晨1點05分從匹茲堡出發前往紐約市。列車剛駛下一個1.73%的陡峭坡道,在凌晨3點20分在一個8.5度的急彎(半徑為675英尺[205米])處翻車。下坡的速度限制為35英里/小時(56公里/小時),彎道上的速度限制為30英里/小時(48公里/小時)。指示要求列車工作人員在彎道前2英里(3.2公里)處測試剎車。

兩臺機車和5節車廂墜落到92英尺(28米)的堤岸下。14節車廂中有10節脫軌。24人喪生。調查人員得出結論,超速導致列車在彎道處翻車。計算出的翻車速度為65英里/小時(105公里/小時)。在事故發生的同一天,美國最大的鐵路公司賓夕法尼亞鐵路公司報告稱,1946年出現運營虧損,這是他們有史以來第一次虧損。1956年,加利福尼亞州也發生了火車在彎道上超速翻車事故(造成30人死亡),1978年弗吉尼亞州也發生了類似的事故(造成6人死亡)。

慣性載荷

每個人都知道,或者認為他們知道什麼是離心力。這是一種現象,它使乘客在彎道上撞到車門,使水桶在足夠快地在頭頂揮舞時保持在桶中,並且是在彎道上使火車脫軌的力。但是離心力可能引起很多困惑,因為它不是傳統意義上的力。離心力是一種慣性效應,當運動中的物體改變方向時就會發生,如上面的每個示例所示。

根據艾薩克·牛頓的說法,運動中的物體傾向於保持運動。如果我們可以消除重力和空氣阻力,則向上丟擲的球將永遠向上直線運動。需要額外的力來改變球的直線運動,並使火車繞彎道行駛。

慣性是物質抵抗運動變化的特性,最容易透過在電梯中加速來解釋。如果一個100磅(0.44千牛)的人站在向上加速的電梯中的磅秤上,則磅秤的讀數將高於100磅。如果電梯向下加速,則磅秤的讀數將小於100磅。如果電梯以16英尺/秒2的速度向上加速,或正常重力加速度的一半,則磅秤的讀數為150磅(0.66千牛)。額外的50磅(0.22千牛)是由於人的身體抵抗加速度。

當物體加速或改變速度時,該加速度伴隨著一個力。根據牛頓第二定律,f=m×a。物體的慣性(m×a)雖然像力一樣作用在磅秤上,但它不是力。磅秤上額外的50磅讀數是100磅的人抵抗以16英尺/秒2(4.9米/秒2)向上加速的阻力——該人的慣性。

慣性總是朝著與加速度相反的方向起作用。在電梯的情況下,人向上加速,而慣性響應向下作用,並被磅秤記錄下來。在圓周運動中也會發生類似的事情。恆速圓周運動會產生一個指向旋轉中心的加速度。

我們傾向於將加速度視為速度的變化(參見第4章)。速度實際上是一個向量,既有方向又有大小。(速度向量的大小也稱為速度。)任何速度向量的變化,

 

圖 7.1

無論是速度變化還是方向變化,都需要一個力來產生變化。

考慮一下沿直線滾動的球。可以用棍子不斷地敲擊球,迫使它沿圓形路徑移動。敲擊力始終指向中心,正在改變球的速度向量的方向。球以恆定速度移動,但方向正在改變;據說球正在向圓心加速。

考慮一個1磅(0.45公斤)的物體,以20英尺/秒(6米/秒)的恆定速度,在一個水平面上以4英尺(1.2米)的繩子末端旋轉。速度向量的方向始終垂直於繩子,不斷變化併產生指向旋轉中心的加速度(圖7.1)。

圓周運動的加速度等於速度的平方除以圓的半徑,即100英尺/秒2(30.5米/秒2)。根據牛頓定律,繩子必須對物體施加一個等於m×a的力,或者說,一個指向旋轉中心3.1磅(13.8牛頓)的力。(回想一下,要正確計算f=m×a,必須將重量除以重力加速度32.2英尺/秒2 [9.8米/秒2]轉換為質量。)繩子對物體施加的力稱為向心力或向心力。該物體對繩子施加慣性載荷,使其保持繃緊。所謂的離心力不是力;它是物體對向心加速度的慣性阻力。1磅(0.45公斤)的物體抵抗繩子施加的加速度,就像電梯中的人

 

圖 7.2。

抵抗向上加速一樣。離心力一詞是不正確的。我們將使用術語離心慣性載荷。但是,當然,當抓住連線到旋轉物體的繩子時,所謂的離心力感覺就像一種力。

在彎道上行駛的機車類似於繩子末端的旋轉物體。兩者都經歷指向旋轉中心的加速度。慣性載荷使繩子繃緊,並在輪子的機車上產生側向力。輪子和鐵軌之間的側向力必須抵消離心慣性載荷,以使火車保持在軌道上。

如果離心慣性載荷過大,機車會開始傾斜。輪緣鉤住軌道,機車開始旋轉,如圖7.2所示。實際上,這就是為什麼輪緣在輪子內側的原因。如果輪緣在外面,則輪子的輕微抬起會將機車滑出軌道。

在1947年賓夕法尼亞鐵路公司的翻車事故中,機車的重量為320,000磅(145,150公斤)。在半徑為675英尺(206米)的彎道上,以88英尺/秒(60英里/小時[97公里/小時])的速度行駛的機車的離心慣性載荷為

 

可怕的數字照片

離心慣性載荷試圖使機車繞支點(右輪底部)順時針傾斜。機車的重量(也透過其重心作用)試圖逆時針旋轉機車來抵抗這種旋轉。

機車的重量和慣性載荷都施加扭矩。扭矩是施加在槓桿臂末端的扭轉力,該力試圖擰緊螺母。在9英寸(23釐米)長的扳手末端施加10磅(44.5牛頓)的力,將產生10×9=90英寸磅的扭矩(10牛米)。

賓夕法尼亞機車的重心在鐵軌上方80英寸(2米)。離心慣性載荷試圖以順時針扭矩旋轉機車,該扭矩等於114,000磅×80英寸——超過900萬英寸磅的扭矩(6.3×106牛米)。

機車重量的槓桿臂在鐵軌中間,即28英寸(0.7米)。機車重量產生的扭矩試圖抵抗離心慣性載荷產生的翻轉扭矩,等於320,000磅×28英寸——幾乎達到900萬英寸磅的扭矩。

試圖使機車翻轉的扭矩略大於機車重量抵抗翻轉扭矩的扭矩。機車在60英里/小時(97公里/小時)的速度下剛剛開始翻轉。

超高

彎道上的外側鐵軌通常高於內側鐵軌。外側鐵軌相對於內側鐵軌的高度稱為超高。

升高的外側鐵軌逆時針旋轉機車,並至少在一定程度上幫助抵抗離心慣性載荷引起的順時針旋轉。實際上,如果汽車的頂部很重,並且右輪抬起足夠高(即使在零英里/小時的速度下),最終汽車也會逆時針傾斜翻倒。當重量載荷指向內側鐵軌外時,汽車在零英里/小時的速度下翻倒,如圖7.3所示。

 

圖 7.3

1947年,調查人員得出結論,機車會在彎道上(外側鐵軌抬高或超高3.5英寸[8.9釐米])以65英里/小時(105公里/小時)的速度翻轉。

美國鐵路公司的150英里/小時(241公里/小時)阿西樂特快列車透過傾斜高達4.2度來建立自己的傾斜角度。如果阿西樂特快列車在一條外側鐵軌抬高2英寸(5釐米)的彎道上行駛,則阿西樂特快列車的速度就好像是在一條額外抬高7英寸(17.8釐米)的彎道上行駛一樣——總共超高9英寸(22.9釐米)。

傾斜式列車更為複雜,而不是鐵路公司的首選。在具有較大半徑的重新設計的彎道上執行更容易。當然,具有較大半徑的彎道會佔用更多的空間——在較舊的已建成社群中很難做到。

道岔速度過快

更常見的情況是在道岔上行駛過快。在道岔上,軌道交叉並急轉彎以合併到平行的軌道上。工程師必須減慢列車的速度以透過道岔,否則有翻車的危險。1951年在新澤西州就發生過這樣的事故,造成84人死亡。

新澤西收費公路的建設需要將火車軌道向北遷移60英尺(18米),為期幾個月。臨時軌道長約2,800英尺(853米),其中包含一個57英尺(17.4米)的臨時木製棧橋,該棧橋的兩端都由大型混凝土橋臺固定。該棧橋也是道岔的一部分,是一個長121英尺(36.9米)、半徑約為1100英尺(335米)的彎道。

主軌道的速度限制為65英里/小時(105公里/小時)。臨時軌道在事故發生當天,即1951年2月6日下午1點開始首次投入使用。道岔和臨時軌道的速度限制為25英里/小時(40公里/小時)。

這趟高峰時段的列車共有 11 節車廂,非常擁擠,大約有 1000 名乘客,許多人站著。機車和前七節車廂脫軌。第三和第四節車廂受損最嚴重。這兩節車廂撞上了混凝土橋墩(撞掉了一大塊),並從 25 英尺(7.6 米)高的堤壩上墜落。第三節車廂側翻,中間梁斷裂,車頂和兩側嚴重受損。第四節車廂的右側整條長度都被撕開。調查人員得出結論,機車的速度超過了計算出的 76 英里/小時(122 公里/小時)的傾覆速度。

在彎道上速度過快絕不是一個過時的問題。在 2005 年 9 月 17 日芝加哥發生的一起幾乎相同的事故中,一列通勤列車在道岔處脫軌,造成兩人死亡。工程師錯過了將速度從 70 英里/小時降至 10 英里/小時(113 公里/小時降至 16 公里/小時)的訊號。

未來應透過正向列車控制(參見第 6 章)來防止在彎道上速度過快的情況發生。

彎道脫軌

在達到傾覆速度之前,緩慢而沉重的貨運列車更有可能因鋼軌翻滾、軌距過寬或車輪爬軌而在彎道上脫軌(圖 7.4)。

由於沉降和列車力,軌道不斷移動(並不斷被重新調整)(圖 7.5)。軌道釘不會阻止鋼軌翻轉,但會防止它們散開。向下車輪力會阻止鋼軌翻轉。如果木製枕木腐爛,彎道上的慣性載荷可能會使鋼軌變寬。

制定了鋼軌之間的最大距離(軌距)標準,

 

圖 7.4 和 7.5

每條鋼軌的最大下沉(縱斷面)以及與直線的最大偏差(平面)。較高等級的軌道需要更嚴格的要求才能在更高速度下安全執行。例如,貨運列車在 3 級軌道上的速度限制為 40 英里/小時(64 公里/小時),在 4 級軌道上的速度限制為 60 英里/小時(97 公里/小時)。(軌道等級在第 11 章中回顧。)儘管今天的軌道幾何形狀是使用雷射感測器透過高速車輛自動測量的,但這些標準是基於低技術方法,即測量與拉緊的 62 英尺(18.8 米)繩子的偏差。每 62 英尺(18.8 米)的 3 級軌道,與直線偏差可達 1.5 英寸(3.8 釐米),下沉可達 2.25 英寸(5.7 釐米)。Acela 在 8 級軌道上的執行速度為 150 英里/小時(241 公里/小時)。每 31 英尺(9.4 米)的 8 級軌道,與直線偏差可達 0.5 英寸(1.27 釐米),下沉可達 1 英寸(2.54 釐米)。

8 級軌道幾何形狀每 30 天檢查一次。事實上,當 Amtrak 準備以 150 英里/小時的速度執行 Acela 時,Amtrak 的首席維護工程師、軌道幾何形狀主管和許多其他人每兩週乘坐一次幾何形狀檢測車,持續了幾個月。他們認為這是一次聯誼體驗。

操作員還會報告任何出現的粗糙或移位的軌道。對於所有以 125 英里/小時(201 公里/小時)以上速度執行的列車,每天至少有一列列車配備感測器,用於測量、量化和記錄任何粗糙軌道的位置。

8 級軌道上的枕木使用混凝土代替木材。混凝土不易發生位移和水損害。8 級軌道的軌距穩定性每年至少檢查一次,使用特殊的車輛以 10,000 磅(44.5 千牛)的力橫向載入鋼軌。8 級軌道還每年使用超聲波感測器檢查兩次內部疲勞裂紋。

L/V 比

脫軌的趨勢通常用 L/V 比來描述,其中 L 是輪軌介面處的橫向力,V 是垂直力,如圖 7.6 所示。L/V 比越高,車輛越容易脫軌。

對於 L/V 極限,有一些粗略的指導原則。如果出現以下情況,可能會發生車輪爬軌:

 

圖 7.6

對於新的貨車,在新的直軌上使用新車輪,L/V 大於 1

在彎道上,L/V 大於 0.82 可能不穩定

對於磨損的車輪和磨損的鋼軌,L/V 大於 0.75 可能不穩定

L/V 大於 0.68 可能會使約束不良的鋼軌翻轉

鋼軌間距過近也會導致車輪爬軌。

所說的 L/V 比僅是經驗法則,而不是嚴格的預測指標。還有許多其他相互作用的因素,例如轉向架、鋼軌和車輪的狀況,以及車身是否在其懸架上彈跳。

隨著車輪和鋼軌的磨損以及接觸位置的變化,L/V 比也可能發生很大變化。圖 7.7 顯示了彎道外側磨損的鋼軌。

 

圖 7.7

另一個磨損模式在第 6 章的圖 6.1 中顯示。Acela 8 級軌道必須每年使用測量 L/V 比的儀器車輛進行檢查。3 特殊的載荷感測器安裝在轉向架框架和車廂地板上。如果 L/V 比超過 0.6,則必須降低速度,直到進行維修為止。

 

© .