罕見“風車”恆星是一個美麗的 астрономический 謎題

被稱為沃爾夫-拉葉星的註定星類產生神秘的風車形狀

A spiral dust plume.

紅外線下觀測到的 WR 104 雙星系統噴射出的螺旋塵埃羽流。

W. M. 凱克天文臺/彼得·圖希爾

文學家在談論被稱為 沃爾夫-拉葉星的極其熾熱和明亮的恆星時,往往會用盡讚美之詞,這些恆星是宇宙中最大、最熱和最稀有的恆星之一。沃爾夫-拉葉星被認為是質量最大的恆星生命中最後、短暫的階段——這些恆星的初始質量是太陽質量的 20 倍到 200 多倍不等。這些龐然大物是藍色的,並且非常明亮,它們以“活得快,死得早”的姿態迅速燃燒掉大量的氫燃料儲備。當它們燃燒殆盡時,它們會以驚人的速度噴射出大量稠密、快速的星風。當它們的燃料耗盡時,這些恆星會在自身引力作用下坍縮,形成我們觀測到的災難性事件——超新星。

它們的極端性質使它們成為天體界的異類,聚集在天文學基礎圖表——赫羅圖的邊緣,該圖表根據恆星的亮度和溫度對恆星進行mapping。 沃爾夫-拉葉星 超越了圖表的“主序星”,普通恆星聚集於此。它們是表面溫度可能超過 200,000 開爾文(比太陽熱 30 倍)的膨脹怪物,其輻射場的光度可能是太陽的百萬倍以上。

來自詹姆斯·韋伯太空望遠鏡的紅外影像()顯示了 WR 140 恆星系統周圍奇特的塵埃波紋。這張照片與數值模擬()非常吻合,後者描繪了 15 個連續的塵埃殼,這些塵埃殼在與該系統八年雙星軌道相吻合的時間間隔內噴射出來。鳴謝:NASA/ESA/CSA/STScI/Lau et al., 2022 ();Shashank Dholakia/Peter Tuthill (影像處理); Yinuo Han/Peter Tuthill ()


關於支援科學新聞報道

如果您喜歡這篇文章,請考慮透過以下方式支援我們屢獲殊榮的新聞報道: 訂閱。透過購買訂閱,您正在幫助確保有關當今塑造我們世界的發現和想法的具有影響力的故事的未來。


沃爾夫-拉葉星的 defining 特徵——氫的低丰度——結果證明是厄運的先兆。當恆星耗盡氫後,它將開始燃燒其他燃料,例如氦,但這隻會為恆星贏得短暫的喘息之機。沃爾夫-拉葉星的壽命以百萬年甚至更短的時間來衡量。與太陽 100 億年的壽命相比,這只是眨眼之間。而且由於大質量恆星在恆星型別中已經屬於例外,因此沃爾夫-拉葉星更加稀有:它們實際上是十億分之一的恆星。儘管它們的亮度使望遠鏡很容易找到它們,但我們只知道銀河系中只有幾百顆。

儘管這些神秘的恆星非常稀有,但它們與當今最緊迫的天文問題有著糾纏的歷史。隨著來自 詹姆斯·韋伯太空望遠鏡等強大設施的更多觀測結果的到來,這種趨勢正在重演。最近,沃爾夫-拉葉星向我們提出了關於驅動它們的物理學的新問題,這可能有助於解決關於恆星的性質和命運的重大謎團。

謎團誕生

1876 年,當法國天文學家查爾斯·沃爾夫和喬治·拉葉首次對天鵝座中的三顆恆星感到困惑時,光譜學——透過將天文物體的光分散成其組成顏色來研究天文物體——的科學還處於起步階段。儘管如此,沃爾夫和拉葉已經見過足夠多的普通恆星,知道正在發生一些非常奇怪的事情。像太陽這樣的普通恆星的光譜由來自整個可見顏色範圍的光組成,上面印有分散的、細窄的暗線,這些暗線代表恆星中化學元素吸收的波長。天鵝座中的新恆星似乎完全是另一回事:它們顯示出鮮豔的彩色 bands,“更讓人聯想到星雲”,天文學家寫道,這使他們推測這些恆星可能“主要將其亮度歸功於熾熱的蒸汽”。

在接下來的幾十年裡,天文學家開始更好地理解大多數恆星型別的光譜,但沃爾夫-拉葉星仍然是一種 incomprehensible 的怪異現象。它們偶爾會吸引像拉爾夫·科普蘭這樣的科學家。1884 年,他帶領探險隊前往秘魯高海拔的的喀喀湖岸邊,天文裝置由騾子隊運送。在那裡,他偶然發現了 γ 船帆座星(“gamma Argus”,現在稱為 γ Velorum),其“藍色中 intensely bright 的線條和黃色和橙色中 gorgeous 的三條 bright 線條使其光譜成為整個天空中 incomparably 最 brilliant 和 striking 的光譜”。科普蘭被迷住了:“這種光譜的 extraordinary beauty … 促使我花費相當一部分時間對銀河系附近進行或多或少的 systematic sweeps”。他最終又 netted 了五顆類似的恆星。儘管沒有一顆像 γ Velorum 那樣 spectacular,但這項努力使已知的沃爾夫-拉葉星目錄增加了一倍以上。

鳴謝:Sayo Studio

半個世紀以來,沃爾夫-拉葉現象仍然是“一扇尚未開啟的門,而且鑰匙非常 curious,以至於我們甚至不確定如何將其插入鎖中”,正如美國天文學家唐納德·H·門澤爾在 1929 年寫道的那樣。但在 20 世紀 30 年代,各種研究逐漸理解了恆星背後的物理學原理。沃爾夫和拉葉關於“熾熱蒸汽”的評論一直都是正確的,但天文學家一直不願將物理條件 dial up 到 mind-boggling 的 levels。

沃爾夫-拉葉星中 searing 的溫度在恆星表面 fuel 瞭如此強大的輻射場,以至於光本身也成為一種不可忽視的力量。任何天體物體的 luminosity 都有一個 fundamental 上限,超過這個上限,“觀測到的發射輻射……會 blow up 恆星”,亞瑟·愛丁頓在 1926 年一篇 influential 的論文中寫道。事實證明,沃爾夫-拉葉星非常 luminous,以至於它們 flirt with 這個“愛丁頓極限”,導致它們的表面層不斷被恆星的 incandescent glare 驅動脫落。開啟門澤爾之門的 key 結果證明是這種強大的 stellar wind,以每秒數千公里的速度 streaming——約為光速的 1%。有時會使用“solar hurricane”這個詞,但這種與太陽 solar wind 的比較並不能 remotely do it justice。想象一下,在平靜的日子裡最輕微的 discernible breath of air 與 powerful water cannon 的力量相比。我們太陽的 solar wind 與沃爾夫-拉葉星 solar wind 之間的 divergence 超過了這個 ratio 10,000 倍以上。

即使是 tiny handful 的這些 overachievers 也能 profoundly impact 整個星系的 ecosystem。 Streaming winds 將能量、動量和新形成的元素帶入恆星之間的 voids,blowing bubbles,compressing clouds 和 heating gas。沃爾夫-拉葉星對銀河系平衡的最重要貢獻是最 least expected 的:stardust。 Dust——tiny flakes of star stuff——在星系物質 grand cycle 中起著各種 crucial 的 roles,也許 most of all 透過 shielding 和 cooling 整個星系的氣體,使其 condense 以形成新 generations of stars。然而,天文學家一直在 struggle to account for 他們看到的所有 dust。在 astronomy 中,dust 有點像 snow:plentiful 在 calm conditions 和 cool climates 中。 last place to expect dust creation 是 somewhere bathed 在 hot, harsh ultraviolet radiation surrounding 沃爾夫-拉葉星周圍。

鳴謝:Sayo Studio

如何在 hell 中形成 snowflakes 的 conundrum 僅在發現名為 WR 140 的 miraculous 系統後才得到解決。在 20 世紀 80 年代,由愛丁堡皇家天文臺的 Peredur Williams 領導的團隊發現,這顆恆星產生的 dust 以 pulses 形式出現,spaced 八年 apart。這一發現 immediately linked 了 dust 的 creation 到與沃爾夫-拉葉星共同 orbit 的 binary companion 的八年 period。這個 companion 是另一顆 luminous blue star,位於 elliptical orbit 上。在這個 binary system 中,天文學家 realized,dust 在這對星進行 closest approach 時形成。當來自沃爾夫-拉葉星的 wind 與 massive companion 的 wind collide 和 entangles 時,兩者互相 fight each other to a standstill。在這裡,cool, calm conditions just right for dust to condense out of the gas。這種 colliding-wind dust mechanism requires 兩顆恆星都 launch powerful winds——a condition that can be met 因為 massive stars 經常 form along with similarly massive companions。

與 WR 140 不同,許多其他沃爾夫-拉葉星 continuously pump out dust,apparently with no regard for 它們 orbit 的 timing。 Figuring out why,以及 continuous dust makers 是否與 clockwork dust-created-each-orbit variety differently work,became a key question for 我 own research。

風車

在 20 世紀 90 年代中期,我與當時的 student John D. Monnier 在加利福尼亞州諾貝爾獎獲得者查爾斯·H·湯斯的小組中工作。夏威夷巨型凱克望遠鏡剛剛開業。然而,要 understand 沃爾夫-拉葉星 dust formation,我們需要 sharp images revealing a level of detail,這超出了 even 凱克巨大的 10 米鏡子的 capability。 Today we could just switch on an adaptive optics system——現在是 standard equipment,可以 counteract 地球大氣層的 shimmering。但在 20 世紀 90 年代,能夠 image 我們沃爾夫-拉葉星的 technology 還需要 tens of years 和 many millions of dollars 在未來。

鳴謝:Sayo Studio

Necessity being the mother of invention,我們 had no option but to think laterally。我們 secured 了一個大型金屬 mask,大約 trash can lid 的 size,上面 carefully arranged perforated holes,to 其中一個凱克望遠鏡。透過 blocking much of the starlight,我們 transformed 主鏡 into an array of small collectors,allowing 凱克 to work much like modern radio telescopes,將許多 smaller antennas 連線在一起。 image fidelity 的 gains exceeded 我們 wildest dreams。整個 performance requires climbing onto the telescope to swap out masks 在 night while perched 在 observatory floor 以上 15 米處,這 something 我 am eternally surprised they ever let us get away with。

Forming images using this technique requires significant computer processing,plus a lot of custom code。當我們 first beheld 我們 most important 沃爾夫-拉葉星 target,一顆 designated WR 104 的恆星,在 computer monitor 上,它是一個 shimmering spiral,resembled 一個 weirdly distorted Christmas bauble。我 looked at John and groaned,“Never heard of any star shaped like a spiral。 How did we get a bug in the code to produce that kind of error?” 我們 went back and improved the code,但 spiral stayed put。 It was not until a few months later,when data from a second visit to the 凱克 telescope produced another spiral,that 我們 accepted reality。 New image was almost the same spiral shape as before but rotated by about 90 degrees。 Spiral was real,and furthermore,we had a moving target on 我們 hands。

Hindsight being what it is,我 understand now that a spiral is exactly what we should have been looking for all along。 What confused us was that dust needs dense, cool gas to form。 沃爾夫-拉葉星 can meet only one of these conditions at any given spot:close to the star the gas is dense but hot,whereas far away it is cool but too tenuous。 This is where binary pair comes in。 當來自兩顆恆星的 winds collide 時,gas compresses far enough away from the stars for it to stay cool——conditions leading to a “dust nursery”。 Dust grains condense out of the gas along a bowl-shaped “shell” where the winds clash。 As the stars orbit and their expanding winds sweep outward,dust spirals out like the jet from a lawn sprinkler。

The result of all this physics manifests as a majestic spiral plume。 To the eye of an astrophysicist,however,beauty is deeper。 These structures open a rare window into phenomena we could otherwise never hope to witness。 It's as if nature writes its secrets in a script too tiny to see,but then the expanding wind inflates the text into a giant banner。 Here were the properties of the winds,the stars that launched them and parameters of their orbital dance,laid out for us to read。 WR 104 became the prototype for a new class of nebulae that we christened “pinwheels”。 We soon found more systems,given names like WR 112 and WR 98a,that shared a common architecture,yet each was unique and distinctly beautiful。

一個新的謎團

在隨後的幾年裡,風車 continued to fascinate,beguile 和 confound 我們。

One ongoing puzzle began back in 1963,when 美國和蘇聯之間的 Partial Test Ban Treaty came into force,prompting 美國 to launch Vela satellites to monitor compliance by sensing gamma rays given off by nuclear tests。 The sensors onboard these satellites began reporting events coming from above,not just below。 These so-called gamma-ray bursts have since become one of the hottest topics in astronomy。 A subtype of longer-duration bursts,which last more than two seconds,are thought to arise from supernovae marking the deaths of 沃爾夫-拉葉星。

Not only are gamma-ray bursts intriguing,but over cosmic time they may even pose a safety risk。 Typical supernovae can really affect only their immediate stellar neighborhood。 This may not be true of gamma-ray-burst supernovae。 Here the energy output is confined to a narrow and powerful beam,so with the right alignment they are visible at vast cosmic distances。 Such an alignment for a nearby event may herald danger。

一系列影像顯示了 WR 104 系統中 dust spiral 的 motion,它在 sky 上 spins over 一個八個月 orbital cycle 的 duration。 鳴謝:W. M. 凱克天文臺/彼得·圖希爾 (model series)

Speculative studies have suggested that events in Earth's fossil record,such as the Late 奧陶紀大滅絕,could have been caused by a gamma-ray-burst strike。 The risk of such a cataclysm exists only when Earth is situated exactly along the line of the burst。 For the first time 我們 data allowed us to analyze the likely axis of a possible future burst from 我們 pinwheel 沃爾夫-拉葉星。 Unfortunately,WR 104 might be pointing 我們 way。

Yet the statistical threat posed by a future gamma-ray strike from WR 104 is truly minuscule:several very unlikely things would have to happen all in sequence,including the low-probability event WR 104 can host a gamma-ray burst (rather than a typical supernova) in the first place。 When writing up 我們 research,my colleagues and I weighed the vanishingly small but nonzero odds—and the fact humanity faces more serious threats from things such as climate change—and decided to include only a few short, carefully worded sentences on this possibility in 我們 paper。 Of course,these lines immediately went viral on the Internet。 Soon I was in my department head's office,explaining how I'd become famous for 2012 end-of-the-world Mayan calendar conspiracy theories。

More recently,we've recovered spectacular new data on the pinwheels from observatories such as 詹姆斯·韋伯太空望遠鏡,the likes of which 沃爾夫 and 拉葉 could hardly have imagined 150 years ago。 Among the very first JWST images was a revelatory vision of an old friend,WR 140 (of the eight-year dust cycle mentioned earlier)。

猿神星三合星系統,在紅外線下看到(),噴射出 sculpted plume of hot dust around 它。 A computer simulation of the dust () can reproduce much of the complex structure in 猿神星’s shell。 鳴謝: ESO/Callingham et al., 1999 (); Yinuo Han/Peter Tuthill ()

With the staggering leap in sensitivity from this new observatory,we can see shell after shell of dust—nearly 20 of them marching out into space,each an exquisitely sculpted replica nested within the older, more inflated one preceding it。 My student Yinuo Han and I compared this observation with a previous computer model we'd built to describe only WR 140's single innermost dust shell。 When we extrapolated out to see what 150 years of repeat shells might look like,our result almost perfectly mimicked the onion-layer image from JWST,showing the uncanny power of mathematics to echo the real world。

Perhaps the most exciting of the new discoveries has been the first confirmed twin 沃爾夫-拉葉星 binary,a system called Apep,which my colleagues and I named after the mortal enemy of Egyptian sun god Ra。 Images of the system evoke the mythology,suggesting a star embattled within a serpent's coils。 Apep also offers a surprise。 Our calculations clock the speed of 沃爾夫-拉葉星's expanding gas wind,as well as the expansion rate of the dust。 These two numbers should agree,and for all the other pinwheels,they do。 In Apep,however,the dust streams out only one third as fast as the gas yet is caught in the teeth of the strongest howling gale known to stellar physics。 It's like finding a feather adrift in a hurricane,somehow floating along at its own gentle pace。 How does dust around Apep perform this magic trick? Nobody knows for sure。

Once again,沃爾夫-拉葉星 are humbling astronomers who think they understand how things work。 And by the time we have the answer to this question,I'm sure these enigmatic stars will have given us still deeper mysteries。 They have a history of mixing things up every time they make an appearance。

© .